Low Mach Number Fluctuating Hydrodynamics for Electrolytes
نویسندگان
چکیده
We formulate and study computationally the low Mach number fluctuating hydrodynamic equations for electrolyte solutions. We are interested in studying transport in mixtures of charged species at the mesoscale, down to scales below the Debye length, where thermal fluctuations have a significant impact on the dynamics. Continuing our previous work on fluctuating hydrodynamics of multicomponent mixtures of incompressible isothermal miscible liquids (A. Donev, et al., Physics of Fluids, 27, 3, 2015), we now include the effect of charged species using a quasielectrostatic approximation. Localized charges create an electric field, which in turn provides additional forcing in the mass and momentum equations. Our low Mach number formulation eliminates sound waves from the fully compressible formulation and leads to a more computationally efficient quasi-incompressible formulation. We demonstrate our ability to model saltwater (NaCl) solutions in both equilibrium and nonequilibrium settings. We show that our algorithm is second-order in the deterministic setting, and for length scales much greater than the Debye length gives results consistent with an electroneutral/ambipolar approximation. In the stochastic setting, our model captures the predicted dynamics of equilibrium and nonequilibrium fluctuations. We also identify and model an instability that appears when diffusive mixing occurs in the presence of an applied electric field.
منابع مشابه
Low Mach Number Fluctuating Hydrodynamics of Multispecies Liquid Mixtures
We develop a low Mach number formulation of the hydrodynamic equations describing transport of mass and momentum in a multispecies mixture of incompressible miscible liquids at specified temperature and pressure that generalizes our prior work on ideal mixtures of ideal gases [K. In this formulation we combine and extend a number of existing descriptions of multispecies transport available in t...
متن کاملLOW MACH NUMBER MODELING OF TYPE Ia SUPERNOVAE. I. HYDRODYNAMICS
We introduce a low Mach number equation set for the large-scale numerical simulation of carbon-oxygen white dwarfs experiencing a thermonuclear deflagration. Since most of the interesting physics in a Type Ia supernova transpires at Mach numbers from 0.01 to 0.1, such an approach enables both a considerable increase in accuracy and a savings in computer time compared with frequently used compre...
متن کاملLow Mach Number Fluctuating Hydrodynamics of Diffusively Mixing Fluids
Aleksandar Donev, ∗ Andy Nonaka, Yifei Sun, 3 Thomas G. Fai, Alejandro L. Garcia, and John B. Bell Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 Center for Computational Science and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, N...
متن کاملLOW MACH NUMBER MODELING OF TYPE Ia SUPERNOVAE. II. ENERGY EVOLUTION
The convective period leading up to a Type Ia supernova (SN Ia) explosion is characterized by very low Mach number flows, requiring hydrodynamic methods well-suited to long-time integration. We continue the development of the lowMach number equation set for stellar-scale flows by incorporating the effects of heat release due to external sources. Low Mach number hydrodynamics equations with a ti...
متن کاملFluctuation-enhanced electric conductivity in electrolyte solutions.
We analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson-Nernst-Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016